Learning Discriminative Sufficient Statistics Score Space for Classification
نویسندگان
چکیده
Generative score spaces provide a principled method to exploit generative information, e.g., data distribution and hidden variables, in discriminative classifiers. The underlying methodology is to derive measures or score functions from generative models. The derived score functions, spanning the so-called score space, provide features of a fixed dimension for discriminative classification. In this paper, we propose a simple yet effective score space which is essentially the sufficient statistics of the adopted generative models and does not involve the parameters of generative models. We further propose a discriminative learning method for the score space that seeks to utilize label information by constraining the classification margin over the score space. The form of score function allows the formulation of simple learning rules, which are essentially the same learning rules for a generative model with an extra posterior imposed over its hidden variables. Experimental evaluation of this approach over two generative models shows that performance of the score space approach coupled with the proposed discriminative learning method is competitive with state-of-the-art classification methods.
منابع مشابه
دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان
Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of discriminant classifiers training or their error. In this ...
متن کاملA New Generative Feature Set Based on Entropy Distance for Discriminative Classification
Score functions induced by generative models extract fixeddimensions feature vectors from different-length data observations by subsuming the process of data generation, projecting them in highly informative spaces called score spaces. In this way, standard discriminative classifiers such as support vector machines, or logistic regressors are proved to achieve higher performances than a solely ...
متن کاملA Comparison on Score Spaces for Expression Microarray Data Classification
In this paper an empirical evaluation of different generative scores for expression microarray data classification is proposed. Score spaces represent a quite recent trend in the machine learning community, taking the best of both generative and discriminative classification paradigms. The scores are extracted from topic models, a class of highly interpretable probabilistic tools whose utility ...
متن کاملAn information fusion based method for liver classification using texture analysis of ultrasound images
This paper presents a method for classification of liver ultrasound images based on texture analysis. The proposed method uses a set of seven texture features having high discriminative power which can be used by radiologists to classify the liver. Feature extraction is carried out using the following texture models: Spatial Gray Level Co-occurrence Matrix, Gray Level Difference Statistics, Fir...
متن کاملEfficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers
We introduce a simple order-based greedy heuristic for learning discriminative structure within generative Bayesian network classifiers. We propose two methods for establishing an order of N features. They are based on the conditional mutual information and classification rate (i.e., risk), respectively. Given an ordering, we can find a discriminative structure with O ( Nk+1 ) score evaluations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013